

Unique Cardan (Propeller) Shafts

Unique Cardan shaft along with Unique Double Diaphragm Coupling Specially suitable for Diesel Driven VT Pumps

- ***Unique Cardan shaft are suitable for connecting widely apart machines.
- *** These can take large misalignments.
- *** Specially suitable for Steel Rolling Mills , Tube Mills , Paper Mills Locomotives , Pump drive, Line shaft , Testing machines, Crane travel Bogey Drive , Vibrating Screen , Tea Machines etc
- *** Can be used in horizontal, vertical, angular layout
- *** Available for torque ratings upto 100000 Nm
- *** Can be supplied with companion hubs & special end attachments.

Unique Transmission (India) Pvt Ltd.

Selection of Unique Cardan Shafts

Step 1 - Selection considering Bearing Life.

Graphs - data sheets give rating based on Service factor = 1.0 & Joint angle not exceeding 3 degrees, smooth load & bearing life 5000 Hours. For a given application following Service factors should be considered.

Service Factor K = K1 * K2 * K3

Multiply transmitted HP by Service Factor K = K1*K2*K3 to arrive at design HP & select shaft size using HP Rating vs Speed Table given in this catalogue.

K1 depends on type of primemover, Values are

Type of Primemover	Without	torsionally	resilient	V	With Highly resilient Flexible				
	Fle	exible Coup	ling		C	oupling			
		K 1				K1			
Petrol Engine 1-3 cyl		1.5				1.0			
Diesel Engine 1-3 Cyl		2.0				1.5			
Petrol Engine 4 or more Cyl		1.25				1.0			
Diesel Engine 4 or more Cyl		1.50				1.1			
Electric Motor		1.00							
K2 depends on life of Beari	ngs								
Life in 5000 1000	0 20000	37000	50000)	75000	100000	200000		
Hours									
K2 1.0 1.2	1.6	1.8	2.0		2.25	2.5	3.0		
K3 depends on Joint Angle									
Joint Angle Degrees 3	4	6	8	10	12	15			
K3 1.0	1.1	1.25	1.4	1.5	1.6	1.7			

CHECK - There is a safe limit for Joint Angle, B for a given RPM . N* B must not exceed following values. Where N is rpm & A is Joint Angle in degrees. Higher joint angles cause high vibratory torque - causing premature failure/ excessive vibratory torque.

Cardan shaft		1410,2872	3120	1510,1600,	1800	1900
Series	28710			1700		
N*B max	25000	23000	21000	18000	12000	10000
Thus for Corios	1700 if one	noting angold i	1000	May namiga	ible Isint or	aala ia

Thus for Series 1700 , if operating speed is 1800~rpm , Max permissible Joint angle is 18000/1800 = 10~degrees

Cardan shaft	116.150	133.150	133.180	144.180	172.225
Series				152.180	
N*B max	20000	18000	18000	15500	15500

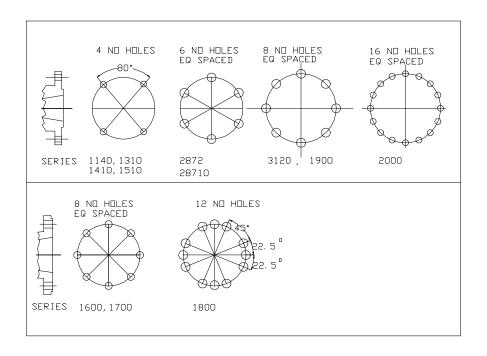
Thus for Series 172.225 , if operating speed is 1800~rpm , Max permissible Joint angle is 15500/1800 = 8.6~degrees

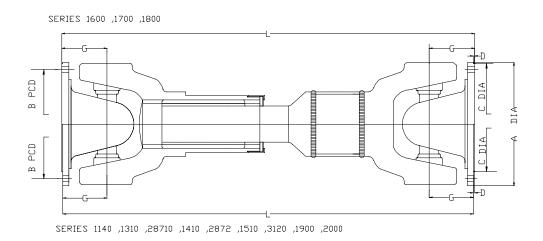
Step 2 - Check for Maximum shock Torque that may occur

Transmitted normal Torque - as calculated from Power transmitted & operating RPM should be multiplied by shock factor K4 to arrive at max Torque.

Qmax = P*60000*K4/(2*3.142*N) Nm where P is Power in KW , N is RPM , K4 is shock factor

Type of Driven Machine K4
Continious Loads (Pumps , Fans , Conveyors) 1.2-1.5


Light Shock Load (Printing m/c , small Paper m/c , textile	1.5-2.0	T91/
m/c)		
Medium Shock load (heavy paper , textile m/c	2.5	
Tube Mill, Pinch Roll)		
Heavy Shock Load (Roller tables, presses, heavy tube mills,	3.0	
crane travel drives)		
Extreme shock loads (Reversing working roller tables ,	4.0 to 6.0	
vibrating conveyors)		
Qmax - should be less than Max Torque capacity as stated in cata	alogue for different i	models.


Step 3 - Check For Critical Speed for Lateral Vibration.

It is necessarry to check for Critical speed

 $Nc = 167 * Dm / L ^2 \\ where Dm is Mean Tube dia in mm = (Do + Di) / 2 \\ Do is Tube OD in mm . Di is Tube ID in mm \\ L is span - Jt centre to Jt Centre in m.$

Metre Jt Cr to Jt Cr Operating speed must not exceed 0.70 * Nc

Unique Transmission (India) Pvt Ltd

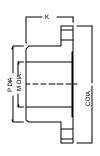
+91 74004 33355

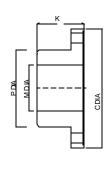
UNIQUE CARDAN SHAFTS SERIES 1140 TO SERIES 2000

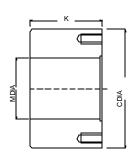
DIMENSIONS

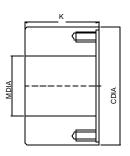
SERIES	Max	Α		BOLTS	MAX	Joint	С	D	G	ı	Р	
	Torque	FLANGE	В	DIA*No	JOINT	Rotation	SPIGOT	SPIGOT	FL FACE TO	FL TH	TOTAL	BOLT
	Short	DIA	PCD		ANGLE	Dia	DIA	HEIGHT	JT CENTRE		TELES-	TIGHT.
	Duration										COPIC	TORQUE
											MOVEMENT	
	Nm	MM	ММ	ММ	DEGREE		MM	ММ	ММ	ММ	ММ	NM

4440	F74	07.0	CO 0	NA 0+4	20	70	FC 40	4.0	20.0	F 4	40	20
1140	571	87.3	69.8	M 8*4	20	76	56.10	1.6	28.6	5.1	46	20
1140-DIN58**	150	58	47	M 5*4	20	76	30	-1.5		5.1	46	7
1140-DIN65**	250	65	52	M 6*4	20	76	35	-1.7		5.1	46	13
1140-DIN75**	400	75	62	M 6*6	20	76	42	-2.0		5.1	46	13
1310	800	96.8	79.4	3/8"*4	20	97	60.30	1.6	41.3	6.7	46	40
1310-DIN90**	750	90	74.5	M8*4	20	97	47	-2.5	55.0	6.7	46	32
28710	1350	100	84	M8*6	18	97	56.90	2.0	48.0	7.8	45	20
28710-DIN90**	750	90	74.5	M8*4	18	97	47.00	-2.5	70.0	7.8	46	20
28710-DIN100*	1350	100	84	M8*6	18	97	57	-2.5	48.0	7.8	45	32
1410M	2100	*	95.2	7/16"*4	20	123	69.85	1.2	42.9	7.5	57	64
2872	2400	120	101.4	M10*6	20	116	82.50	2.0	54.0	7.8	60	48
2872-DIN90	1350	90	74.5	M8*4	20	116	47	-2.5	70.0	7.8	60	20
2872-DIN100**	1350	100	84	M8*6	20	116	57	-2.5	70.0	7.8	60	32
2872-DIN120**	3000	120	101.5	M10*8	20	116	75	-2.5	54.0	7.8	60	64
1510	3200	146.0	120.6	1/2"*4	20	136	95.20	1.6	63.5	9.1	51	100
1510-DIN120**	3200	120	101.5	M10*8	20	136	75	-2.5	95.0	9.1	51	64
1550	3200	*	120.6	1/2"*4	20	150	95.2	1.6	50.8	9.1	63.5	100
3120	4500	129.0	111.5	M10*8	25	135	82.50	2.0	76.0	8.0	60	48
3120-DIN120**	4500	120	101.5	M10*8	20	135	75	-2.5	76.0	8.0	60	64
3120-DIN150**	4500	150	130	M12*8	20	135	90	-3	76.0	8.0	60	111
1610, 1600	4500	174.6	155.5	3/8"	22	173	168.28	1.6	69.9	9.5	70	40
1600 mod	4500	174.6	155.5	12*16 no	22	173	168.28	1.6	70.0	8.5	70	64
1610-DIN180**	4500	180.0	155.5	M12*8	22	173	110.00	-3.0	75.0	10.0	70	48
1700	6500	203.2	184.1	3/8"	35	200	196.85	1.6	76.2	9.5	75	40
1800	9260	203.2	184.1	7/16"	20	217	196.85	1.6	85.7	11.1	82	64
1900	16700	276.2	247.6	M16	20	268	222.25	2.4	98.4	14.3	82	210
2000	26000	287.3	263.5	1/2"	15	287	196.80	2.4	95.2	14.3	76	100


^{* 1410/1410}M SERIES- RECT. FLANGE , SWING DIA \sim 123 MM


NOTES - L LENGTH CAN BE AS REQUIRED
THE DIMENSIONS ARE FOR STANDARD EXECUTIONS AND SUBJECT TO CHANGE WITHOUT NOTICE.
ADDITIONAL INFORMATION ABOUT RATINGS AND GUIDELINES ARE GIVEN SEPERATELY
CARDAN SHAFTS ARE ALSO AVAILABLE IN MANY OTHER STYLES/ASSEMBLIES
SOME ILLUSTRATION FOR ALTERNATIVE ASSEMBLIES ARE GIVEN SEPERATELY.


UNIQUE TRANSMISSION I PVT LTD


^{* 1550} SERIES- RECT. FLANGE, SWING DIA ~ 150 MM

Companion Hubs

Standard Hub Series 1140, 1310,28710 1410,2872,1510,3120

Standard Hub Series 1600,1610 1700,1800

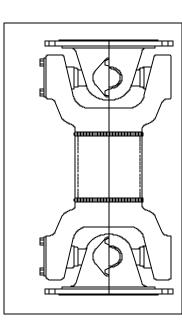
Special Hub Series 1140, 1310,28710 1410,2872,1510,3120

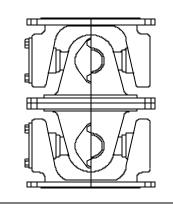
Special HubSeries 1600,1700,1800
1610

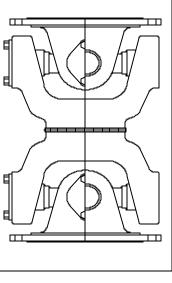
	Sta	ndard Hul	os	
Series	С	М	K	Р
		Max Bore		
	mm	mm	mm	mm
1140	87	32	45	57
1310	97	42	51	62
28710	100	48	50	69
1410	116	48	51	73
2872	120	55	55	80
1510	146	62	76	95
3120	130	65	75	90
1600,1610	175	80	89	120
1700	203	100	100	155
1800	203	100	100	155

	Specia	l Hubs		
Series	С	М	K	
		Max Bore		
	mm	mm	mm	
1140	87	55	50	
1310	97	60	63	
28710	100	70	75	
1410	116	70	76	
2872	120	80	80	
1510	146	95	100	
3120	130	85	75	
1600,1610	175	114	127	
1700	203	140	152	
1800	203	140	152	

Unique Transmission (India) Pvt Ltd


Weigl	nt & MR^2 data	for Cardan shat	ft Series 1140 to	1900	
Cardan shaft	Weight	MR^2	Change	Change	
Series	1000 mm	1000 mm	Weight	Mr^2	
	Length	Length	per 100 mm	per 100 mm	
	Kg	KgM^2	Kg	Kg.m^2	
4440	7.0	0.0040	0.5	0.0005	
1140	7.2	0.0046	0.5	0.0005	
1310	8.5	0.0067	0.5	0.0005	
28710	10.5	0.0108	0.6	0.0005	
1410	11.9	0.0134	0.6	0.0007	
2872	16.2	0.0196	0.6	0.0007	
1510	18.5	0.0331	0.6	0.0012	
3120	25.0	0.0400	0.6	0.0012	
1600,1610	27.6	0.0707	0.6	0.0012	
1700	36.8	0.1277	1.0	0.0020	
1800	55.8	0.1935	1.0	0.0020	
1900	87.8	0.5630	1.4	0.0045	


Weight &	Weight & MR^2 data for Companion Hub shaft Series 1140 to 1900									
	Standard	Hub Each	Special Hub Each							
Series	Weight	MR^2	Weight	MR^2						
	Kg	KgM^2	Kg	KgM^2						
1140	0.9	0.0007	1.5	0.0020						
1310	1.0	0.0011	2.3	0.0037						
28710	1.0	0.0011	2.2	0.0041						
1410	1.2	0.0018	4.0	0.0092						
2872	1.8	0.0027	4.0	0.0103						
1510	3.6	0.0081	7.7	0.0292						
3120	2.3	0.0042	3.9	0.0116						
1600,1610	5.5	0.0178	13.5	0.0740						
1700	10.0	0.0475	20.3	0.1546						
1800	10.0	0.0475	20.3	0.1546						
1900	24.0	0.2200	52.9	0.7286						


Weight and MR^2 values of companion Hubs are at max bore capacity

Unique Transmission (India) Pvt Ltd

Unique Cardan Shafts Minimum Lengths

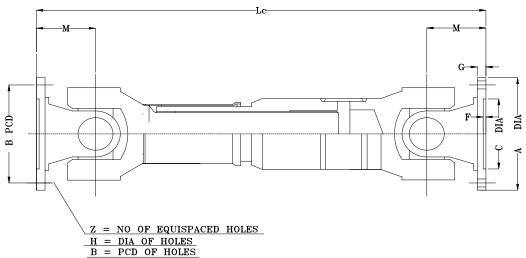
Double Set of 2 Flange Yoke Assy

Short Yoke Shaft Assembly

Double Joint

	-	-	
	Short Yoke Shaft Assembly	Double Set of 2 Flange Yoke Assy	Double Joint
	Telescopic Type	Fixed Centre Type , Length mm	Fixed Centre Type , Length mm
Series	Fully Compressed Length mm		
	Normal Special		Normal Special
1140	245 230	121	165 136
1310	310 280	168	180 150
28710	365 330	192	240 220
1410		174	210 180
2872		220	290 230
1510	460 410	254	320 265
3120	625 560	304	350 300
1600/1610		280	350 290
1700	745 670	305	375 305
1800		343	420

Unique Transmission (India) Pvt Ltd

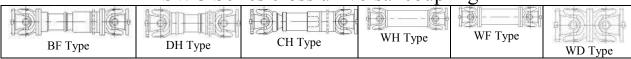

Nominal Torque ratings for cardan shafts series 1140 to Series 1800 at various speeds for smooth loads, Jt angle 3 deg, 5000 hrs life. At SF = 1.0

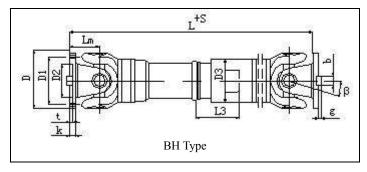
Series	1140	1310	28710	1410	2872	1510	3120	1600	1700	1800
				1410M				1610		
Speed		Nominal Torque Rating in NM								
10 rpm	571	800	1350	2100	2400	3200	4000	4500	6500	9260
50 rpm	427	670	1054	1610	1994	2279	2849	3704	5700	7123
100 rpm	356	513	869	1282	1567	1923	2279	2849	4487	5698
250 rpm	259	370	627	969	1225	1425	1652	1994	3276	4416
500 rpm	199	285	541	755	969	1111	1211	1710	2564	3562
750 rpm	180	256	484	665	855	959	1187	1520	2232	3229
1000 rpm	157	228	449	598	784	876	1054	1353	2066	2849
1500 rpm	138	199	394	522	688	760	926	1187	1804	2493
1800 rpm	131	190	376	487	670	712	871	1128	1721	2374
2000 rpm	125	182	360	470	659	694	837	1068	1603	2279
3000 rpm	107	159	335	416	558	605	665	950	1425	1970
4000 rpm	98	142	325	383	499	498	552	837	1264	1781

Continious HP ratings of cardan shafts series 1140 to Series 1800 at various speeds For smooth loads , Jt angle 3 deg , 5000 hrs life. At SF = 1.0

Series	1140	1310	28710	1410	2872	1510	3120	1600	1700	1800		
				1410M				1610				
Speed		Nominal HP rating										
10 rpm	0.8	1.1	1.9	2.9	3.3	4	5	6	9	13		
50 rpm	3.0	4.7	7.4	11.3	14	16	20	26	40	50		
100 rpm	5.0	7.2	12.2	18	22	27	32	40	63	80		
250 rpm	9.1	13	22	34	43	50	58	70	115	155		
500 rpm	14	20	38	53	68	78	85	120	180	250		
750 rpm	19	27	51	70	90	101	125	160	235	340		
1000 rpm	22	32	63	84	110	123	148	190	290	400		
1500 rpm	29	42	83	110	145	160	195	250	380	525		
1800 rpm	33	48	95	123	169	180	220	285	435	600		
2000 rpm	35	51	101	132	185	195	235	300	450	640		
3000 rpm	45	67	140	175	235	255	280	400	600	830		
4000 rpm	55	80	183	215	280	280	310	470	710	1000		

Cardan Shaft Series	98.120	116.150	133.180	144.180	152.180	185.225
Nominal Torque, Tk KNm	3.0	7.50	11.0	12.6	16.0	33.0
Fatigue Torque Tdw KNm	1.5	2.90	4.4	6.3	7.3	13.0
Bearing Load Cr, KNm	0.9	2.0	3.3	4.2	4.6	8.6
A Dia mm	120	150	180	180	180	225
B, Bolt PCD mm	101.5	130	155.5	155.5	155.5	196
G, Flange Th mm	8	10	12	14	14	16
Z, No of Holes	8	8	8	8	10	8
H, Hole dia mm	10	12	14	14	16	16
C, Dia mm	75	90	110	110	110	140
F Spigot Depth mm	2.5	3.0	3.0	3	3.0	5
M mm	72.5	86	90	100	95	120
Jt Angle max deg	20	35	35	35	25	22
Max Telescopic movement mm	70	110	110	110	110	110
Jt rotation dia mm	116	142	160	170	176	215
Lc Min mm	480	605	690	710	780	680
Tube OD mm	76	89	89	101	114	140
Weight Lc min Kg	13	26	41	47	56	76
Tube Kg/100 mm	0.7	1.0	1.0	1.4	1.8	2.5
Inertia MR^2 Lc min	177	394	900	1040	1356	2700
KG.CM^2						
Tube Inertia MR^2 /	8	19	19	31	50	111
100 mm Kg.CM^2						


1-Universal Joint Bearing Life $B10 = 1.5*10^7(Cr/Q)^3.33 / (N*B*Kb)$ Hours


Q is transsmitted Torque in KNm , N= Operating RPM , B= Operating Joint angle or 2 degrees whichever is higher. , Kb=1.0 for Elec Motor/Turbine drive . Kb=1.2 for Diesel Engine

UNIQUE TRANSMISSION (INDIA) PVT LTD CARDAN SHAFTS

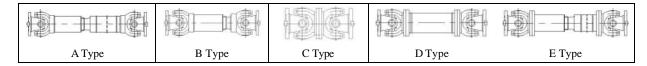
²⁻ Special Shorter Length also offered with reduced telescopic movement on request.

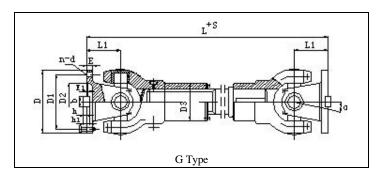
SWC Series cross universal coupling

1	Rotary Max		Fatigue Torque	Bearing Torque	Max Angle β≤	Size								
Model	Diamed Torque Mdw	Mdw KN.m	CR KNm	D1		D2	D3	Lm	n-d	K	t	b	g	
SWC225	225	55	26	11.4	15°	196	135	152	120	8-17	20	5.0	32	9.0
SWC250	250	71	35.5	19.1	15°	218	150	168	140	8-19	25	6.0	40	12.5
SWC285	285	100	50	26.4	15°	245	170	194	160	8-21	27	7.0	40	15.0
SWC315	315	140	70	36.6	15°	280	185	219	180	10-23	32	8.0	40	15.0
SWC350	350	200	100	48.3	15°	310	210	267	194	10-23	35	8.0	50	16.0
SWC390	390	280	140	67.1	15°	345	235	267	215	10-25	40	8.0	70	18.0
SWC440	440	400	200	100	15°	390	255	325	260	16-28	42	10.0	80	20.0
SWC490	490	560	280	130	15°	435	275	325	270	16-31	47	12.0	90	22.5
SWC550	550	800	400	185	15°	492	320	426	305	16-31	50	12.0	100	22.5

	Model	225	250	285	315	350	390	440	490	550
	Lmin	920	1035	1190	1315	1410	1590	1875	1985	2300
ВН	Weight(kg)	130	180	273	389	601	758	1210	1602	2503
	Ls	140	140	140	140	150	170	190	190	240
	Lmin	920	1035	1190	1315	1410	1590	1875	1985	2300
BF	Weight(kg)	148	210	315	440	662	857	1380	1731	2667
	Ls	140	140	140	140	150	170	190	190	240
	Lmin	640	735	880	980	1070	1200			
DH	Weight(kg)	102	148	240	350	500	655			
	Ls	70	70	80	90	90	90			
	Lmin	1500	1615	1875	2000	2115	2245	2510	2620	3085
СН	Weight(kg)	192	250	375	544	853	1000	1620	1860	3150
	Ls	700	700	800	800	800	800	800	800	1000
33711	Lmin	520	620	720	805	875	955	1155	1205	1355
WH	Weight(kg)	85	144	215	302	415	566	870	1140	1526
***	Lmin	610	715	810	915	980	1100	1290	1360	1510
WF	Weight(kg)	104	150	240	332	452	668	980	1274	1763
IIID	Lmin	480	560	640	720	776	860	1040	1080	1220
WD	Weight(kg)	90	140	201	291	395	554	854	1156	1624

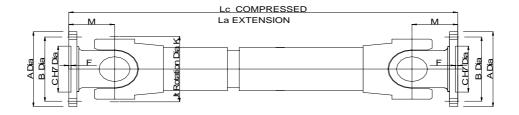
Universal Joint Bearing Life $B10 = 1.5*10^7*(CR/Q)^3.33/(N*B*Kb)$ Hours


Q = Transmitted Torque in KNm, N is Speed in RPM


B= Operating Joint Angle in Degrees or 2 Whichever is higher

Kb= 1.0 for Motor/Turnine Drives, Kb= 1.2 for Diesel Engine Drives

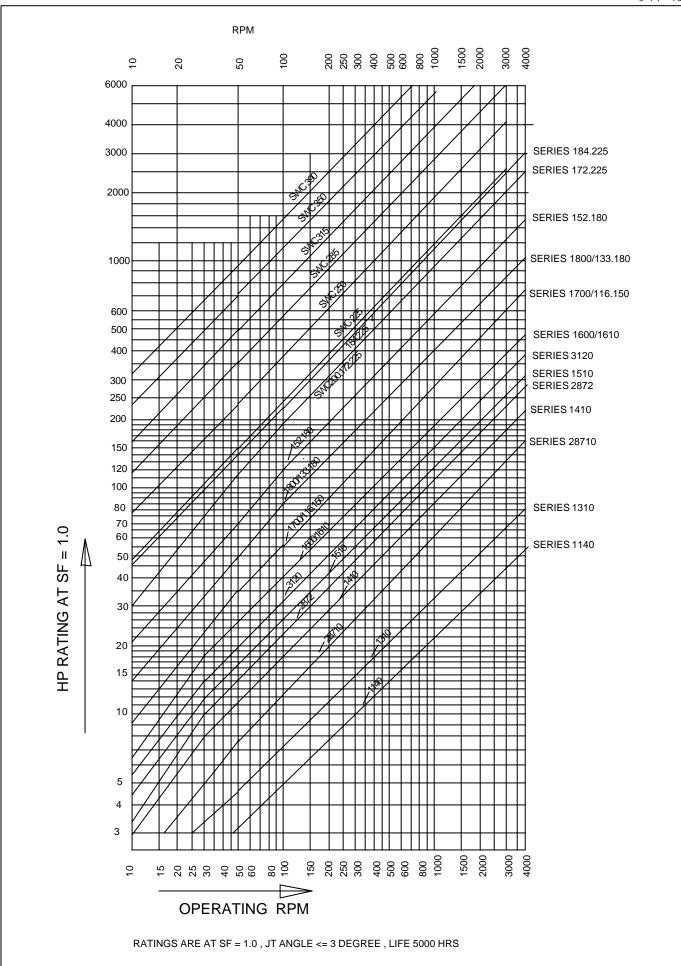
SWP Series Cardan shaft



	Rotary	Nominal	Fatigue	Axial					S	ize				
Model	Diameter	Torque	Torque Tf	Angle										
	D	Tn Kn.m	Kn.m	a =	S	D1	D2	D3	Е	E1	b*h	h1	L1	n-d
SWP160	160	16	8	10°	50	140	95	114	15	4	20*12	6	85	6-13
SWP180	180	20	10	10°	60	155	105	121	15	4	24*14	7	95	6-15
SWP200	200	31.5	16	10°	70	175	125	127	17	5	28*16	8	110	8-15
SWP225	225	40	20	10°	75	196	135	152	20	5	32*18	12.5	130	8-17
SWP250	250	63	31.5	10°	80	218	150	168	25	5	40*25	15	135	8-19
SWP285	285	90	45	10°	100	245	170	194	27	7	40*30	15	150	8-21
SWP315	315	126	63	10°	110	280	185	219	32	7	40*30	16	170	10-23
SWP350	350	180	90	10°	120	310	210	245	35	8	50*32	18	185	10-23
SWP390	390	250	120	10°	120	345	235	273	40	8	70*36	20	205	10-25
SWP435	435	355	160	10°	150	385	255	299	42	10	80*40	22.5	235	16-28
SWP480	480	450	224	10°	170	425	275	351	47	12	90*45	22.5	265	16-31
SWP550	550	710	355	10°	190	492	320	402	50	12	100*45	27.5	290	16-31
SWP600	600	1000	500	10°	210	544	380	450	55	15	90*55	27.5	330	22-34
SWP640	640	1250	630	10°	230	575	385	480	60	15	100*60	30	350	18-38

	Model	160	180	200	225	250	285	315	350	390	435	480	550	600	640
	Lmin	610	700	780	928	958	1103	1240	1400	1480	1740	1940	2125	2400	2700
G	Weight(kg)	60	75	98	135	168	273	367	515	645	1214	1497	2053	2730	3700
	Add Kg/100	3.2	3.8	4.8	6.4	6.4	9.6	12.1	15.8	15.8	24.7	27.1	32.6	50	65
	Lmin	660	737	823	933	978	1133	1250	1380	1495	1710	1910	2135	2355	2685
A	Weight(kg)	57	70	91	119	157	255	345	458	596	962	1394	1944	2530	3453
	Add Kg/100	3	3.2	4.4	6.6	7.3	9.4	12	15.9	18	20	28	35.7	40.5	48.3
В	L	585	640	730	830	860	1000	1120	1230	1310	1555	1740	1905	2100	2240
Б	Weight(kg)	54	66	85	116	148	249	329	438	557	953	1343	1745	2440	2850
C	L	340	380	440	520	540	600	680	740	820	940	1060	1160	1320	1400
	Weight(kg)	38	50	70	90	130	185	250	330	472	760	1000	1400	1480	2700
	Lmin	430	474	544	636	690	760	860	940	1060	1180	1360	1460	1720	1790
D	Weight(kg)	45	57	77	104	155	220	291	375	531	855	980	1700	2343	3240
	Add Kg/100	3	3.2	4.4	6.6	7.3	9.4	12	15.9	18	20	28	35.7	40.5	48.3
	Lmin	715	800	880	1000	1055	1210	1345	1480	1630	1860	2122	2338	2640	2960
E	Weight(kg)	59	79	95	121	189	305	395	518	693	1267	1452	2260	2820	3921
	Add Kg/100	3	3.2	4.4	6.6	7.3	9.4	12	15.9	18	20	28	35.7	40.5	48.3

Cardan Shaft Series SWC - Modified - No Face Key


Z= No of Holes , H= Hole Dia , B= Hole PCD

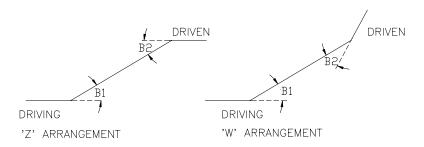
Cardan Shaft Series	SWC225 MOD	SWC225-250	SWC250-285	SWC285-315	SWC315-350	SWC350-390	SWC390-435
Nominal Torque ,Mz KNm	50	50	71	100	140	200	280
Fatigue Torque Mdw KNm	25	25	35.5	50	70	100	140
Bearing Load Rating, CR KNm	11.4	11.4	19.1	26.4	36.6	50	70
A Flange Dia , mm	225	250	285	315	350	390	435
B Bolt Hole PCD mm	196	218	245	280	310	345	385
G , Flange Thickness mm	20	20	20	22	25	28	32
Z , No of Holes	8	8	8	8	10	10	10
H, Hole Dia mm, Tol C12	16	18	20	22	22	24	27
C, Spigot Dia mm, Tol H7	140	140	175	175	220	250	280
F, Spiot Depth mm	5	6	7	7	8	8	10
M, mm	120	120	140	160	180	194	215
Jt angle Max , Degrees	15	15	15	15	15	15	15
Lc, Compressed Min mm	920	920	1035	1190	1315	1410	1590
La, Extension mm	140	140	140	140	140	150	170
K , Joint Rotation Dia	225	225	250	285	315	350	390
Tube OD, mm	152	152	168	194	219	267	267
Weight - Lc min Kg	130	130	180	275	390	610	760
MR^2 - Lc min Kg.M^2	0.54	0.54	0.97	2.01	3.6	10	12
Weight Tube/100 mm	4.9	4.9	5.3	6.3	8	15	15
MR^2 Tube/100 mm Kg.M^2	0.024	0.024	0.028	0.051	0.08	0.25	0.25

Note - Special Shafts - Shorter Length or Extra Slip or Different End Flanges on request

Universal Joint Bearing Life, B10 = 1.5*10^7* (CR/Q)^3.33/(N*B*Kb) Hours
Q = Transmitted Torque in KNm , N= Operating Speed in RPM ,B = Operating Joint angle in Degree or 2 whichever is higher Kb = 1.0 for Elec Motor or Turbine Drive / 1.2 for Diesel Engine Drine

> Unique Transmission (India) Pvt Ltd 10/1D Lal Bazar Street , Kolkata 700001

Unique Transmission (India) Pvt Ltd. Installation, Operation & Maintenance


Warning

These instruction are only general instructions for installation, operation & maintenance of cardan shaft assemblies. Unique Transmission (India) Pvt Ltd shall not be liable either directly or indirectly for any accident /injury that may occur as a result of using these shafts.

Assembly, disassembly & maintenance operations shall be done only by trained & qualified personnel Drive shafts are also parts, due to their intrinsic nature, can cause damages to persons or things during their duty even if they are correctly dimensioned and installed. Therefore user must take all necessarry precautions so as to prevent and avoid such damages by intalling necessary protection guards etc.

Checking Correct Installation

In order to ensure constant velocity transfer of motion shafts should be arranged correctly either in Z arrangement or W arrangement as shown in sketch below. Driving & driven Joint angle should be equal - max difference in angle can be 1 degree. Non observance of this causes vibration & failure of shaft. Z - arrangement driving (input) shaft & driven shaft (output) should be parallel within 1 degree. W arrangement - ensure driving Joint angle is equal to driven Joint angle.

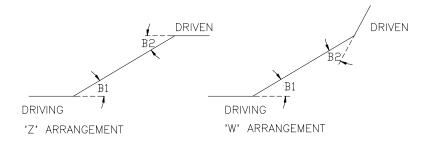
Maximum Allowable Working Speed

Please check critical speed is at least 30 % higher than operating speed well above operating speed. Consult Unique for calculation of critical speed. (Such calculation normally required required for shafts longer than 1000 mm operating at speed 750 rpm or higher.)

While selecting cardan shaft Joint angle must be considered. In any case, joint angle must not exceed following figures in degrees for smooth operation

Series	Operating RPM								
	500 rpm	1000 rpm	1500 rpm	3000 rpm					
	Max opert	Max operting joint angle in degrees							
1140	20	20	16.6	8.3					
1310	20	20	16.6	8.3					
28710	18	18	15.2	7.6					
2872	20	20	15.2	7.6					
1410	20	20	15.2	7.6					
1510	20	18	12	6					
3120	20	18	12	6					
1600	20	18	12	6					
1700	20	18	12	6					

Unique Transmission India Pvt Ltd Installation, Operation & Maintenance Unique Cardan Shafts Series 116.150,133.180, 144.180,152.180, 185.225


Warning

These instruction are only general instructions for installation, operation & maintenance of cardan shaft assemblies. Unique Transmission (India) Pvt Ltd. shall not be liable either directly or indirectly for any accident /injury that may occur as a result of using these shafts.

Assembly , disassembly & maintenance operations shall be done only by trained & qualified personnel Drive shafts are also parts , due to their intrinsic nature , can cause damages to persons or things during their duty even if they are correctly dimensioned and installed. Therefore user must take all necessarry precautions so as to prevent and avoid such damages by intalling necessary protection guards etc.

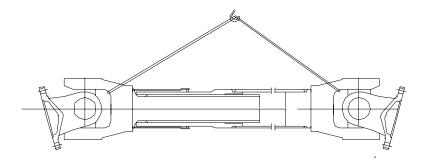
Checking Correct Installation

In order to ensure constant velocity transfer of motion shafts should be arranged correctly either in Z arrangement or W arrangement as shown in sketch below. Driving & driven Joint angle should be equal - max difference in angle can be 1 degree. Non observance of this causes vibration & failure of shaft. Z - arrangement driving (input) shaft & driven shaft (output) should be parallel within 1 degree. W arrangement - ensure driving Joint angle is equal to driven Joint angle.

Maximum Allowable Working Speed

Please check critical speed is at least 30 % higher than operating speed well above operating speed. Consult Unique for calculation of critical speed. (Such calculation normally required required for shafts longer than 1000 mm operating at speed 750 rpm or higher.)

While selecting cardan shaft Joint angle must be considered. In any case, joint angle must not exceed following figures for smooth operation


Cardan shaft	116.150	133.180	144.180	152.180	185.225
Series					
Operating rpm	N	Aaximum J	oint Angle	e in degree	S
500	35	35	35	25	22
1000	20	18	18	15	15
1500	13	12	12	10	10
3000	6.7	6.5	6.5	5.2	5.2

Higher joint angles can cause vibration & noise.

Handling Drive Shafts

The wrong handling of shafts may cause serious damage to them. Drive shaft must always be hadlled horizontally & if it is necessary to deviate from this position, all precautions must be taken so that two sides do not seperate & come out. If slings have to be used, these should be used in Yokes as shown in sketch using adequate ropes. Never use UJ cross for handling drive shaft.

General assembly Rules

Make sure angular location of Yokes is correct. The Yokes should be in same line. Check for Arrow Marks/match marks.

Take care of cleaning the surfaces that will come in contact, most of all that concerns lubricants, rust, paint & dirt.Remove any safeties that may have been set against accidental coming out during transportation. During assembly do not force with levers or other tools specially in Universal Joint Area. Make sure that bolts are tightened by torque wrench to recommended tightening torque. In casse of painting make sure area where sealing slides shall not be painted.

Disassembly -

Before disassembly necessary precaution must be taken to avoid falling or coming out of pieces. Refer to recommendation concerning handling and the assembly.

Maintenance -

Maintenance Interval will depend on environmental and working conditions. However we suggest that you carry out regularly , planning with maintenance of other components - but without extending them over six months. The controls to be made concern correct tightening of bolts & control of play in Spiders (U Joints) and of sliding action. For washing drive shafts do not use steam or pressure water. Do not use aggressive chemical detergents. In case of washing an accurate regreasing must be provided

Lubrication

After drive shafts have been installed always check correct filling with grease of the Universal Joints. The pumping of grease should be continued until grease comes out from sealing. Lubrication of Universal Joints should be done after every 2000 Hours of running or 12 months whichever is earlier. In order to regrease always use Lithium Base Grease such as:

Servo Multipurpose of IOC , Multipurpose Grease of Indrol , Multipurpose Grease MP II of Bharat Petroleum.

The sliding section (coated with anti friction material) does not need normally lubrication. In case lubrication is wanted, quantity of grease must not be more than 30 grams. A check should be made once in 12 months & lurication of sliding part done if necessary.

Safety Precautions

***A serious fatal Injury can occur

if you lack proper training

if you fail to to use proper tools & safety equipment

if you use incompatible drive shaft components

if you use wornout damaged drive shaft components

- *** Donot work on drive shaft (with or without guard) when machine is operating
- *** Drive shafts can be dangerous. You can entangle clothes, skin, hair, hands etc. This can be fatal or cause serious injury.

Ordering Spares -

For ordering spares - please state Shaft Model Number (This is essential) & description of part, viz

Spares for Unique Cardan shaft Series 132.180, Drg No

Spare UJ Cross Kit

Spare Fixed Joint (Flange Yoke + UJ Cross Kit + Stub Yoke)

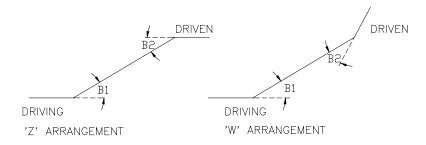
Spare Slip Joint (Flange Yoke + UJ Cross Kit + Sleeve Yoke + Spline shaft)

Spare Complete shaft assembly 132.180 - Unique Drg No

Please note each UJ cross Kit comprises 1 no UJ cross & 4 no Needle cups complete with needle roller bearings.

Adequate spares should be kept & ordered well in time - Lead time (if out of stock) can be 18 to 20 weeks.

Unique Transmission India Pvt Ltd Installation, Operation & Maintenance Cardan Shafts SWC Type


Warning

These instruction are only general instructions for installation, operation & maintenance of cardan shaft assemblies. Unique Transmission (India) Pvt Ltd. shall not be liable either directly or indirectly for any accident /injury that may occur as a result of using these shafts.

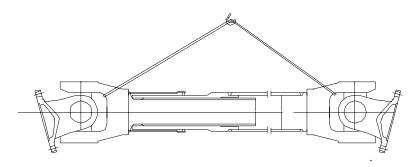
Assembly , disassembly & maintenance operations shall be done only by trained & qualified personnel Drive shafts are also parts , due to their intrinsic nature , can cause damages to persons or things during their duty even if they are correctly dimensioned and installed. Therefore user must take all necessarry precautions so as to prevent and avoid such damages by intalling necessary protection guards etc.

Checking Correct Installation

In order to ensure constant velocity transfer of motion shafts should be arranged correctly either in Z arrangement or W arrangement as shown in sketch below. Driving & driven Joint angle should be equal - max difference in angle can be 1 degree. Non observance of this causes vibration & failure of shaft. Z - arrangement driving (input) shaft & driven shaft (output) should be parallel within 1 degree. W arrangement - ensure driving Joint angle is equal to driven Joint angle.

Maximum Allowable Working Speed

Please check critical speed is at least 30 % higher than operating speed well above operating speed. Consult Unique for calculation of critical speed. (Such calculation normally required required for shafts longer than 1000 mm operating at speed 750 rpm or higher.)


While selecting cardan shaft Joint angle must be considered. In any case, joint angle must not exceed following figures for smooth operation

Cardan shaft	SWC	SWC	SWC	SWC
Series	225	285	350	440
	250	315	390	
Operating rpm]	Maximum J	oint Angle	e in degrees
300	15	15	15	15
500	15	15	15	12
1000	12	11	8.5	6
1500	9	7	5.5	4

Handling Drive Shafts

The wrong handling of shafts may cause serious damage to them . Drive shaft must always be handled horizontally & if it is necessary to deviate from this position , all precautions must be taken so that two sides do not seperate & come out . If slings have to be used , these should be used in Yokes as shown in sketch using adequate ropes. Never use UJ cross for handling drive shaft .

General assembly Rules

Make sure angular location of Yokes is correct. The Yokes should be in same line. Take care of cleaning the surfaces that will come in contact, most of all that concerns lubricants, rust, paint & dirt.Remove any safeties that may have been set against accidental coming out during transportation. During assembly do not force with levers or other tools specially in Universal Joint Area. Make sure that bolts are tightened by torque wrench to recommended tightening torque.

Disassembly -

Before disassembly necessary precaution must be taken to avoid falling or coming out of pieces. Refer to recommendation concerning handling and the assembly.

Disassembly & replacement of UJ Cross Kits

Tap one end of the bearing lightly to remove pressure on snap ring.Remove snap ring with pliers; Repeat procedure for opposite bearing.Then drive with a soft drift on one bearing to push the opposite bearing through its yoke.Remove exposed bearing, turn the joint over and remove the first bearing by driving on

the exposed end of the journal cross.Repeat the process for the other two bearings. Reassembly

Remove the bearings from new cross assembly, holding the cups so that needles do not fall out. Position the cross in one Yoke. Position one bearing cup with its needles in the Yoke and insert the journal of the cross into the bearing. Press bearing into the Yoke. Repeat for the opposite bearing. If press is not available use a vice. Never hammer on new bearings. Instal snap ring and repeat operation for next two bearings.

Maintenance -

Maintenance Interval will depend on environmental and working conditions. However we suggest that you carry out regularly, planning with maintenance of other components - but without extending them over six months. The controls to be made concern correct tightening of bolts & control of play in

Spiders (U Joints) and of sliding action. For washing drive shafts donot use steam or pressure water. Donot use aggressive chemical detergents. In case of washing an accurate regreasing must be provided

Lubrication

After drive shafts have been installed always check correct filling with grease of the Universal Joints. The pumping of grease should be continued until grease comes out from sealing. Lubrication of Universal Joints should be done after every 3 months .Sliding Splines should also be similarly lubricated every 3 months.

In order to regrease always use Lithium Base Grease such as:

Servo Multipurpose of IOC , Multipurpose Grease of Indrol , Multipurpose Grease MP II of Bharat Petroleum.

Safety Precautions

Rotaing parts are potentially dangerous and must be properly guarded.

Uuse proper tools & safety equipment

Do not use incompatible drive shaft components

Do not usewornout damaged drive shaft components

- *** Donot work on drive shaft (with or without guard) when machine is operating
- *** Drive shafts can be dangerous . You can entangle clothes , skin , hair, hands etc .

This can be fatal or cause serious injury.